

- I can use the Ruler Postulate to find lengths of segments. (CC.9-12.G.CO.1)
- I can use the Segment Addition Postulate to find lengths of segments. (CC.9-12.G.CO.1)
- I can use segment postulates to identify congruent segments. (CC.9-12.G.CO.7)

In Geometry, a rule that is accepted without proof I called a *postulate* or an *axiom*. A rule that can be proven is called a *theorem*. Let's start by looking at some geometric postulates.

POSTULATE 1 Ruler Postulate The points on a line can be matched one to one with the real numbers. The real number that corresponds to a point is the coordinate of the point. The distance between points A and B, written as AB, is the absolute value of the difference of the coordinates of A and B.

The Ruler Postulate is helpful when trying to find lengths of segments. We can find the lengths of segments by looking at the **distance** between two points.

The distance between any two points is the length of the segment that connects them.

The distance between E and J is EJ, the length of \overline{EJ} . To find the distance, subtract the numbers corresponding to the points and then take the absolute value.

$$EJ = |7 - 1|$$

= |6|
= 6 cm

Example 1 – Use the figure above to find each length:

A)
$$EG = \frac{4 \text{ cm}}{15 - 1}$$

B) $EF = \frac{1.6 \text{ cm}}{1.6 \text{ cm}}$

C) $FH = \frac{3 \text{ cm}}{2.6 - 2.6}$
 $= |4|$
 $= |1.6|$
 $= |3|$
 $= |3|$
 $= |3|$

When 3 points are collinear, you can say that one point is between the other two.

Point B is between points A and C.

Point E is not between points D and A.

POSTULATE POSTULATE 2 Segment Addition Postulate If It is between A and C, then

If
$$AB + BC = AC$$
, then B is between A and C.

piece + piece = whole

Example 2 - On \overline{PR} , Q is between P and R. If PQ = 9, QR = x, and PR = 16, please find QR.

Example 3 - Apply the Segment Addition Postulate

The locations shown lie in a straight line. Find the distance from the starting point to the destination.

Example 4 - Find a length.

A) Use the diagram to find KL.

KL = 23

B) Use the diagram to find SV.

$$20 + n = 2n - 1$$

CONGRUENT SEGMENTS Line segments that have the same length are called **congruent segments**. In the diagram below, you can say "the length of \overline{AB} is equal to the length of \overline{CD} ," or you can say " \overline{AB} is congruent to \overline{CD} ." The symbol \cong means "is congruent to."

Example 4 – Compare segments for congruence

Use the diagram to determine whether \overrightarrow{AB} and \overrightarrow{CD} are congruent.

• To find length of a horizontal segment, you can subtract the x-coordinates. To find AB:

• To find the length of a vertical segment, you can subtract the y-coordinates. To find ω :

So $\overline{AB} \cong \overline{CD}$ because they have the same length