Geometry A	Name:			
1.2 Notes – Use Segments and Congruence	Date:	Period:		

In Geometry, a rule that is accepted without proof I called a *postulate* or an *axiom*. A rule that can be proven is called a *theorem*. Let's start by looking at some geometric postulates.

The Ruler Postulate is helpful when trying to find lengths of segments. We can find the lengths of segments by looking at the **distance** between two points.

The distance between any two points is the length of the segment that connects them.

The distance between *E* and *J* is *EJ*, the length of \overline{EJ} . To find the distance, subtract the numbers corresponding to the points and then take the absolute value.

$$EJ = |7 - 1|$$

= |6|
= 6 cm

Example 1 – Use the figure above to find each length:

A) EG = ____ B) EF = ____ C) FH = ____

When 3 points are collinear, you can say that one point is **between** the other two.

Example 2 - On \overline{PR} , Q is between P and R. If PQ = 9, QR = x, and PR = 16, please find QR.

CONGRUENT SEGMENTS Line segments that have the same length are called **congruent segments**. In the diagram below, you can say "the length of \overline{AB} is equal to the length of \overline{CD} ," or you can say " \overline{AB} is congruent to \overline{CD} ." The symbol \cong means "is congruent to."

Example 4 – Compare segments for congruence

Use the diagram to determine whether \overline{AB} and \overline{CD} are congruent.

- To find length of a horizontal segment, you can subtract the x-coordinates.
- To find the length of a vertical segment, you can subtract the y-coordinates.

				1	y			
	A(-1,7)					E	3(3,	7)
						C(2, 5)		
				1		D	2,	1)
_				-1.				~
				,	1			x