\qquad
Date : \qquad Period : \qquad

LEARNiNG

- I can use coordinate geometry to identify parallelograms.

You can use the following conditions to determine whether a quadrilateral is a parallelogram.

Conditions for Parallelograms

A quadrilateral is a parallelogram if....

- Both pairs of opposite sides are parallel (definition)
- Both pairs of opposite sides are congruent.
- Both pairs of opposite angles are congruent.
- The diagonals bisect each other.
- One pair of opposite sides is congruent and parallel.

Example 1: Find the intersections of diagonals.

The diagonals of $\square S T U V$ intersect at point W . Find the coordinates of W .

Practice:
a. The vertices of $\square A B C D$ are $A(-4,2), \mathrm{B}(3,2), \mathrm{C}(1,-1)$ and $\mathrm{D}(-6,-1)$. The diagonals of $\square A B C D$ intersect at point P. What are the coordinates of P ?
b. The vertices of $\square A B C D$ are $A(-5,6), \mathrm{B}(1,6), \mathrm{C}(4,0)$ and $\mathrm{D}(-2,0)$. The diagonals of $\square A B C D$ intersect at point P. What are the coordinates of P ?

Example 2: Find missing coordinate of parallelogram.

If you know the coordinates of three vertices of a parallelogram, you can use slope to find the coordinates of the fourth vertex.
c. Three vertices of $\square R S T V$ are $R(3,1), S(-1,5)$, and $T(3,6)$. Find the coordinates of V.

Practice:
The coordinates of three vertices of a parallelogram are given. Find the coordinates of the fourth vertex.
d. $\square A B C D$ with $\mathrm{A}(0,6), \mathrm{B}(5,8)$, and $\mathrm{C}(5,5)$

Example 3: Use coordinate Geometry to identify parallelograms

e. Show that $A B C D$ is a parallelogram.

f. The vertices of LMNO are $\mathrm{L}(-4,2), \mathrm{M}(-5,-2), \mathrm{N}(-1,-4)$ and $\mathrm{O}(0,0)$. Show that LMNO is a parallelogram.

