Geometry Notes – 4.1/4.7 Coordinate Proofs

•

Name:	
Date:	Period:

I can classify triangles on the coordinate plane using slope and distance formulas.

Recall:

Slope formula:
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 Distance formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Two lines on the coordinate plane are **perpendicular** if ______

To classify triangles on the coordinate plane:

- 1) Use the distance formula to find the length of each side of the triangle.
 - If no sides are congruent, the triangle is ______.
 - If two sides are congruent, the triangle is ______.
 - If all three sides are congruent, the triangle is ______.
- 2) Use the slope formula to determine if any sides are perpendicular to determine if the triangle is a right triangle.
 - IF the triangle IS a right triangle, the right angle will always be opposite the longest side, so...

Example: Classify ΔRST by its side lengths. Then determine if the triangle is a right triangle.

Step 1: Use distance formula to find the side lengths:

R(-3, 3)	A y	_		-5	(5,	2)
					7	
			π:	/ 3, -	-1)	x

Step 2: Use slopes to determine if there is a right angle. The two shortest sides are _____and _____ so find their slopes.

and _____ are/are not perpendicular, therefore \angle _____ is/is not a right angle and \triangle RST is/ is not a _____.

Sol	lution:	ΔRST	is

Think you got it? Great! Try a couple on your own 😊

1) The vertices of ΔXYZ are X(-2,3), Y(-2,-7), and Z(4,-5).

Classify ΔXYZ by its side lengths, then determine if the triangle is a right triangle.

2) The vertices of $\triangle PQR$ are P(-3,-1), Q(-4,4), and R(7,1).

Classify ΔXYZ by its side lengths, then determine if the triangle is a right triangle.

Name:	
Date:	Period:

A triangle has the given vertices. Graph the triangle and classify it by its side lengths. Determine if the triangle is a right triangle.

1. A(-3, 3), B(2, 8), C(7, 3)

2. D(1, 1), E(4, 0) F(8, 5)

3. G(1, -3), H(2, -6), I(-1, -5)

	°08 = 8∠m (8
.) $\Delta GHI \cong \Delta MNO$ because all of their corresponding sides are congruent.	^o 24 are dtod ; $B \ge A \ge$ (6)
3) Isosceles 4) Equilateral 5) Isosceles	ג אופאל (ג selesor) אופוא (ג
	:sr9w2nA

8. In ΔJKL , what is the measure of $\angle K$?

- 7. Which triangles can you conclude are congruent? Why?
- 6. In $\triangle ABC$, which angles can you conclude are congruent? Why? What is the measure of $\angle A$?

Extension Questions...

Γ

0 8

5. M(0, 0), N(1, 3), O(3,1)