Name:	Keu	
Date:	3	Period :

- I can identify parallel and perpendicular lines by examining slopes.
- I can write equations of parallel and perpendicular lines.

	Parallel Lines	Perpendicular Lines
Definition	Two lines are parallel if they have the	To lines are perpendicular if their slopes
	<u>Same</u> slope.	are opposite reciprocals.
8.		or
		their product is -1
Graph Models	A(-3,3) y (331)	E (-\3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(-3,0) Q x	(4,-1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(3,-2)	G F (12,-3)
	Slope of \overrightarrow{AB} , $m_1 = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Slope of \overrightarrow{EF} , $m_1 = \underline{-\lambda}$ $m_{\overrightarrow{EF}} = \underline{-3-3} = \underline{-6} = \underline{-3}$
	Slope of \overrightarrow{CD} , $m_2 = -\frac{1}{3}$	Slope of \overrightarrow{GH} , $m_2 = \frac{1}{3}$ $m_2 = \frac{-4+1}{-2-4} = \frac{-3}{-6} = \frac{-3}{-6}$
Symbols	AB 11 CD	EF L GH

Slope Criterion for Parallel Lines

Two non-vertical lines are parallel if and only if they have _____ the same slope

Vertical lines are <u>always parallel</u>.

Example 1: Find the slope of a line parallel to the line containing A(-3, 4) and B(2, 5).

$$\text{MAB} = \frac{5-4}{2+3} = \frac{1}{5}$$

Slope of line parallel will be the same so m= 1

Example 2: Write an equation of a line that is parallel to $y = \frac{2}{3}x + 7$

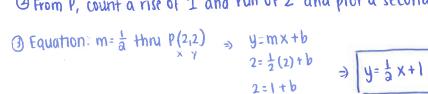
$$y = \frac{2}{3} \times + 8 \in \text{different}$$

 $y = \frac{2}{3} \times + 8 \in \text{different}$
 $y = \frac{2}{3} \times + 8 \in \text{different}$
 $y = \frac{2}{3} \times + 8 \in \text{different}$

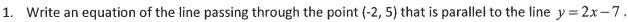
The line parallel to $y=\frac{2}{3}x+7$ will have the same slope but a different y-intercept

Example 3: Write an equation of the line passing through the point (3, 4) that is parallel to the line y = -4x + 5.

P


(0 - 2)

B (9,0)


Example 4: Graph the line parallel to line AB that passes through point P and write its equation.

① Slope of
$$\overrightarrow{AB} = \frac{-2-0}{0-4} = \frac{-2}{-4} = \frac{1}{4} + rise$$

3 from P, count a rise of 1 and run of 2 and piot a second point

Check Point: Chose One!

2. Write an equation of the line passing through the point (3, 5) that is parallel to the line passing through (3, 3) and (-3, -1). y=mx+b

Old Slope =
$$\frac{-1-3}{-3-3}$$
, $\frac{-4}{-6} = \frac{2}{3}$

$$5^{2}\frac{2}{3}(3)+b$$

$$\Rightarrow y = \frac{2}{3}x + 3$$

hewslope =
$$\frac{2}{3}$$
 thru (3,5)

Slope Criterion for Perpendicular Lines

Two non-vertical lines are perpendicular if and only if their stopes are perpendicular if and only if

Vertical lines and horizontal lines are always 1

Example 1: Find the slope of a line perpendicular to the line containing A(-3, 4) and B(2, 5).

old slope =
$$\frac{6-4}{2+3} = \frac{1}{5}$$

The slope of the line I would have an opp-reciprocal slope of -6

Example 2: Write an equation of a line that is perpendicular to $y = \frac{2}{3}x + 7$

the line perpendicular to $y^2 = \frac{2}{3}x + 7$ would have an opposite reapprocal slope and either the same y-intercept or a different y-intercept

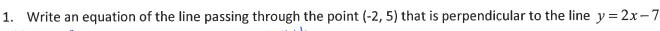
Example 3: Write an equation of the line passing through the point (6, -3) that is perpendicular to the y = -4x + 5

=> | y= - 1 x+4

(-3,1)

(-1,-1)

Example 4: Graph the line perpendicular to line AB that passes through point P and write its equation


① Find slope of
$$\overrightarrow{AB} = \frac{-1-1}{-1+3} = \frac{-2}{2} = \frac{-1}{1+7150}$$

- 2 slope of line 1 = 1; start at P and count a rise of 1 ? run of 1 ? ylot point
- 3 Equation: m=1 thru P(1,3) \Rightarrow y=mx+b 3=1(1)+b \Rightarrow y=1x+2

Check Point: Choose One!

b=2

old stope = a new slope = - 1 thru (-2,6)

2. Write an equation of the line passing through the point (3, 5) that is perpendicular to the line passing through (3, 3) and (-3, -1). y=mxtb

old slope =
$$\frac{-1-3}{-3-3} = \frac{-4}{-6} = \frac{2}{3}$$

new slope =
$$-\frac{3}{a}$$
 thru (3.5)